Refine Your Search

Topic

Author

Search Results

Technical Paper

A Dynamic Durability Analysis Method and Application to a Battery Support Subsystem

2004-03-08
2004-01-0874
The battery support in a small car is an example of a subsystem that lends itself to mounted component dynamic fatigue analysis, due to its weight and localized attachments. This paper describes a durability analysis method that was developed to define the required enforced motion, stress response, and fatigue life for such subsystems. The method combines the large mass method with the modal transient formulation to determine the dynamic stress responses. The large mass method was selected over others for its ease of use and efficiency when working with the modal formulation and known accelerations from a single driving point. In this example, these known accelerations were obtained from the drive files of a 4-DOF shake table that was used for corresponding lab tests of a rear compartment body structure. These drive files, originally displacements, were differentiated twice and filtered to produce prescribed accelerations to the finite element model.
Technical Paper

Development of the SAE Biaxial Wheel Test Load File

2004-03-08
2004-01-1578
Recently published SAE Recommended Practice J2562 - SAE Biaxial Wheel Test standardized the terminology, equipment, and test procedure for the biaxial wheel test. This test was originally presented by Fraunhofer Institut Betriebsfestigkeit - LBF (Fraunhofer Institute for Structural Durability) in SAE paper 830135 “Automotive Wheels, Method and Procedure for Optimal Design and Testing”. The first release of SAE J2562 included a generic, scalable load file applicable to wheels designed for five to eight passenger vehicles with capacity to carry a proportional amount of luggage or ballast. Future releases of SAE J2562 would include two additional load files; one applicable to light trucks that have substantial cargo capacity and one for sports cars typically limited to two passengers and marginal luggage. This report details the process used to develop the SAE Biaxial Wheel Test Load File for passenger vehicles.
Technical Paper

e-Thermal: A Vehicle-Level HVAC/PTC Simulation Tool

2004-03-08
2004-01-1510
This paper describes a vehicle-level simulation model for climate control and powertrain cooling developed and currently utilized at GM. The tool was developed in response to GM's need to speed vehicle development for HVAC and powertrain cooling to meet world-class program execution timing (18 to 24 month vehicle development cycles). At the same time the simulation tool had to complement GM's strategy to move additional engineering responsibility to its HVAC suppliers. This simulation tool called “e-Thermal” was quickly developed and currently is in widespread (global) use across GM. This paper describes GM's objectives and requirements for developing e-Thermal. The structure of the tool and the capabilities of the simulation tool modules (refrigeration, front end airflow, passenger compartment, engine, transmission, Interior air handling …) is introduced. Model data requirements and GM's strategy for acquiring component data are also described.
Technical Paper

Brake Squeal Noise Testing and Analysis Correlation

2003-05-05
2003-01-1616
Brake squeal has been a persistent quality issue for automobile OEMs and brake system suppliers. The ability to model and measure brake squeal dynamics is of utmost importance in brake squeal reduction efforts. However, due to the complex nature of brake squeal and the wide frequency range in which it occurs, it is difficult to accurately correlate and update analytical models to experimental results. This paper introduces a systematic and rigorous correlation and updating process that yields FE models, which can accurately reproduce high-frequency brake squeal dynamics.
Technical Paper

Accuracy of Total Hydrocarbon Analyzer Measurements Measurements in the SULEV Region

2003-03-03
2003-01-0388
The super-ultra-low-emission-vehicle (SULEV) non-methane organic gas (NMOG) hydrocarbon exhaust standard as legislated by the state of California LEV II regulations is 10 milligrams per mile. This requires that the associative instrumentation must be capable of accurately and precisely determining total hydrocarbons (THC) concentrations on the order of 10 parts per billion-carbon (ppbC) for vehicle tests run under optimum conditions on a bag mini-diluter (BMD) test site. The flame ionization detector (FID) is the standard instrument used in the measurement of THC. Currently, there are many instrument manufacturers that produce these types of analyzers. This paper studies the limit of detection and accuracy capabilities of one of these instruments, the Beckman 400A FID. In addition, the paper shows evidence that supports that this “state of technology” as described by this instrument, is sufficient to meet the demands of the today's most stringent, vehicle emission standards.
Technical Paper

Modeling, Simulation, and Hardware-in-the-Loop Transmission Test System Software Development

2003-03-03
2003-01-0673
This paper describes the development of a generic test cell software designed to overcome many vehicle-component testing difficulties by introducing modern, real-time control and simulation capabilities directly to laboratory test environments. Successfully demonstrated in a transmission test cell system, this software eliminated the need for internal combustion engines (ICE) and test-track vehicles. It incorporated the control of an advanced AC induction motor that electrically simulated the ICE and a DC dynamometer that electrically replicated vehicle loads. Engine behaviors controlled by the software included not only the average crankshaft torque production but also engine inertia and firing pulses, particularly during shifts. Vehicle loads included rolling resistance, aerodynamic drag, grade, and more importantly, vehicle inertia corresponding to sport utility, light truck, or passenger cars.
Technical Paper

Experimental Investigation of the Near Wake of a Pick-up Truck

2003-03-03
2003-01-0651
The results of an experimental investigation of the flow over a pickup truck are presented. The main objectives of the study are to gain a better understanding of the flow structure in near wake region, and to obtain a detailed quantitative data set for validation of numerical simulations of this flow. Experiments were conducted at moderate Reynolds numbers (∼3×105) in the open return tunnel at the University of Michigan. Measured quantities include: the mean pressure on the symmetry plane, unsteady pressure in the bed, and Particle Image Velocimetry (PIV) measurements of the flow in the near wake. The unsteady pressure results show that pressure fluctuations in the forward section of the bed are small and increase significantly at the edge of the tailgate. Pressure fluctuation spectra at the edge of the tailgate show a spectral peak at a Strouhal number of 0.07 and large energy content at very low frequency.
Technical Paper

Automated Aerodynamic Design Optimization Process for Automotive Vehicle

2003-03-03
2003-01-0993
An automatic optimization process for the aerodynamic design of automotive vehicle shapes is presented. The Computational Fluid Dynamics (CFD) mesh generation and the analysis software packages are coupled for transfer of data and information between the two packages. This communication enables an automated process in which designs are created and analyzed for the aerodynamic drag. New designs are created by morphing the CFD model for the baseline design. The automated process is applied to perform a parametric study on a generic automobile sedan shape. The results show that the process can be used for aerodynamic optimization of any automotive vehicle shape. The turnaround for the automated process is at least an order of magnitude less than the conventional analysis process.
Technical Paper

Corrections for the Pressure Gradient Effect on Vehicle Aerodynamic Drag

2003-03-03
2003-01-0935
Effects of the pressure gradient in the wind tunnel test section on vehicle aerodynamic drag were investigated using computational fluid dynamics (CFD). The numerical study was used to obtain the aerodynamic drag of several vehicles in two virtual wind tunnels, one with a zero pressure gradient and another with a nonzero (but small) pressure gradient. A comparison of the vehicle aerodynamic drags in these two virtual wind tunnels, and investigation of the physical mechanisms causing these differences, have led to two correction formulas. These formulas can be used to correct for the pressure gradient effect on vehicle aerodynamic drag measurement in a wind tunnel that has a nonzero pressure gradient. In the first formula, the correction is given explicitly in terms of known variables. The correction is 80% accurate for passenger car, sports car, sports utility vehicle (SUV), and is 70% accurate for pickup truck.
Technical Paper

Brake and Cruise System Integration using Robust Engineering

2003-03-03
2003-01-1095
This paper presents a project that was done to solve an integration problem between a brake system and a cruise control system on a GM vehicle program, each of which was supplied by a different supplier. This paper presents how the problem was resolved using a CAE tool which was a combination of formulated MS/Excel spreadsheet, Overdrive (GM internal code), and iSIGHT of Engineous Software Inc, which is a process integrator and process automator. A sensitivity study of system reliability was conducted using iSIGHT. The most sensitive factor was found through the sensitivity study. Thereafter, a Robust design was obtained. The recommended Robust Design was implemented in the vehicle program, which led to a substantial cost saving. The CAE software tool (the combination) developed through the problem solving process will be used to ensure quality of brake and cruise system performance for future vehicle programs.
Technical Paper

Corrosion Testing of 42-Volt Electrical Components

2003-03-03
2003-01-0308
As automobile power needs increase 42-volt electrical systems are being proposed for use in consumer vehicles. One concern when using these new systems is the corrosion resistance of these components, especially in underhood environments. Corrosion is an electrochemical phenomenon and as such can be altered (increased or decreased) by the application of an external current or voltage. Although unintentional, the use of a higher voltage electrical system has the ability to increase corrosion through its normal use. This program evaluated the impact of corrosion on electrical components powered by 14 and 42-volt DC systems. Accelerated corrosion test findings suggested that 42-volt systems may be more susceptible to corrosion, but without proper environmental shielding both supply system can have unacceptable degradation.
Technical Paper

Evaluation of Different Countermeasures and Packaging Limits for the FMVSS201U

2003-03-03
2003-01-0329
Different countermeasure designs for reducing the HIC (d) and to comply with FMVSS201U have been evaluated in many component-level studies by suppliers and OEMs. This study presents guidelines to support future countermeasure and interior designs. FMVSS201U has changed the way OEMs design interiors of the vehicles today. Most recently, much more work is being done to find ways to design interiors of the vehicles that comply with FMVSS201U while keeping the interiors aesthetically pleasing, attaining driver comfort and meeting driver visibility requirements. Introduction of side-rail airbags has further affected countermeasure design and packaging. This study focuses on several countermeasure designs in the side-rail region as used in a mid-sized vehicle implemented to meet FMVSS201U requirements and their efficiency with respect to Head Injury Criterion (HIC) reduction given a fixed packaging space.
Technical Paper

Update on the Developments of the SAE J2334 Laboratory Cyclic Corrosion Test

2003-03-03
2003-01-1234
The Corrosion Task Force of the Automotive/Steel Partnership has developed the SAE J2334 cyclic laboratory test for evaluating the cosmetic corrosion resistance of auto body steel sheet. [Ref. 1] Since the publishing of this test in 1997, further work has improved the precision of J2334. In this paper, the results of this work along with the revisions to the J2334 test will be discussed.
Technical Paper

Development of a Belt CVT Fluid Test Procedure Using the VT20/25E Belt Box for the DEX-CVT® Specification

2002-10-21
2002-01-2819
The introduction of the continuously variable transmission (CVT) by General Motors required the introduction of a test to evaluate fluid for the ECOTEC VTi transmission. With assistance from Van Doorne's Transmissie (VDT), the belt and sheave supplier for the transmission, a rig was constructed to test fluids in a transmission-like environment without the variability of in-vehicle testing. The test schedule includes testing for fluid friction coefficient, shear stability, and wear rating and is currently subject to further work aimed at confirming repeatability and discrimination. Once confirmed, the new procedure will become part of the DEX-CVT® specification for the new service fluids for the VT20/25E transmissions.
Technical Paper

Development of 4WS Control Algorithm for a SUV

2002-03-04
2002-01-1216
Sport Utility Vehicles (SUV) and light duty trucks have gained in popularity for the last several years and the demand for more car-like behavior has increased, accordingly. Two areas for potential improvement are vehicle stability and maneuverability while parking. 4WS (4 wheel steering system) is known as an effective solution to stability and low speed maneuverability. In this paper, we identify a new systematic design method of two degree of freedom vehicle state feedback control algorithm that can improve vehicle stability, and show its control effects for a SUV with trailer towing. Low speed maneuvering is improved when the rear tires are steered in negative phase relative to the front tires. However with a large rear steer angle at low speed, the vehicle's rear overhang tracks a wider swing-out path than a 2WS vehicle. For this concern, we propose a new swing-out reduction control algorithm.
Technical Paper

GM's New Silverado and Sierra Heavy Duty Truck with the Duramax 6600 Diesel Powertrain

2001-11-12
2001-01-2705
Vehicle requirements are measurable and define the performance of a system and its design constraints. Requirements are developed and translated from the voice of the buying customer, the voice of the government, and the voice of General Motors. Duramax powertrain subsystem requirements are developed from the vehicle requirements. This “flow down” approach optimizes the vehicle as a system. The packaging envelope, common interfaces, and manufacturing impacts were the outcome of the Vehicle Portfolio Development Process. Project execution was a global development process executed by Isuzu Engineers in Japan, Allison Automatic Transmission Engineers in Indianapolis, ZF Manual Transmission Engineers in Detroit, and General Motors Engineers in Detroit.
Technical Paper

An Integrated Process of CFD Analysis and Design Optimization with Underhood Thermal Application

2001-03-05
2001-01-0637
With the revolutionary advances in computing power and software technology, the future trend of integrating design and CFD analysis software package to realize an automated design optimization has been explored in this study. The integrated process of UG, ICEMCFD, and FLUENT was accomplished using iSIGHT for vehicle Aero/Thermal applications. Process integration, CFD solution strategy, optimization algorithm and the practicality for real world problem of this process have been studied, and will be discussed in this paper. As an example of this application, the results of an underhood thermal design will be presented. The advantage of systematical and rapid design exploration is demonstrated by using this integrated process. It also shows the great potential of computer based design automation in vehicle Aero/Thermal development.
Technical Paper

Forward Collision Warning: Preliminary Requirements for Crash Alert Timing

2001-03-05
2001-01-0462
Forward collision warning (FCW) systems are intended to provide drivers with crash alerts to help them avoid or mitigate rear-end crashes. To facilitate successful deployment of FCW systems, the Ford-GM Crash Avoidance Metrics Partnership (CAMP) developed preliminary minimum functional requirements for FCW systems implemented on light vehicles (passenger cars, light trucks, and vans). This paper summarizes one aspect of the CAMP results: minimum requirements and recommendations for when to present rear-end crash alerts to the driver. These requirements are valid over a set of kinematic conditions that are described, and assume successful tracking and identification of a legitimate crash threat. The results are based on extensive closed-course human factors testing that studied drivers' last-second braking preferences and capabilities. The paper reviews the human factors testing, modeling of results, and the computation of FCW crash alert timing requirements and recommendations.
Technical Paper

Life-cycle Management in the Automotive Supply Chain: Results of a Survey of Saturn Tier I Suppliers

2000-04-26
2000-01-1463
Saturn Corporation and its suppliers are partnering with the U.S. Environmental Protection Agency (EPA) Design for the Environment (DfE) Program and the University of Tennessee (UT) Center for Clean Products and Clean Technologies (CCPCT) in a project to develop a model for life-cycle management (LCM). This paper presents key findings from the first phase of the project, a survey by Saturn of its suppliers to determine their interests and needs for a supply chain LCM project, and identifies framework strategies for successful LCM.
Technical Paper

The Importance of Sealing Pass-Through Locations Via the Front of Dash Barrier Assembly

1999-05-17
1999-01-1802
An improvement in a vehicle's front of dash barrier assembly's acoustical performance has in the past been addressed by both adding individual absorbers and increasing the overall weight of the dash sound barrier assembly. Depending upon the target market of the vehicle, adding mass may not be an option for improved acoustical performance. Understanding the value of an increase in vehicle mass and / or cost for a specific level of improved acoustical performance continues to plague both Original Equipment Manufacturer (OEM) Engineers and Purchasing representatives. This paper examines the importance of properly sealing the front of dash pass-through areas and offers recommendations which can improve the overall vehicle acoustical performance without the addition of cost and mass to the vehicle.
X